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An analytical method is developed for determining the temperatures
and heat-ransfer coefficients at the inner perimeter of channels of
square cross section with uniform volume heat release in the walls in
the case of a given temperature distribution over the outer perimeter
of the channels.

Tubes of rectangular cross section find widespread
application in various heat exchangers. For turbulent
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Temperature field in the walls of a square
channel calculated from formula (6) for | =
=3.05 mm, 6= 0.7mm, h= oz/kw =0.398
1/mm, qy/Aw = 30.6 deg/mm?, t; = 85.5°C,

t = 16.8° C.

flow, the mean heat transfer in channels on noncircu-
lar cross section is usually calculatedto an accuracy
of 10% from the formulas for circular tubes, taking
the hydraulic equivalent diameter as the characteris-
tic dimension. In the case of high thermal loads and
internal heat release in the channel walls, a corner
past which the fluid flows at a low rate experiences the
highest thermal stress. The problem of determining
the local heat-transfer coefficients at the corners is
therefore of practical importance.

Deissler and Teilor {1] have proposed a method of
calculating the distribution of the shear stresses, tem-
peratures, and heat-transfer coefficients overthe per-
imeter of rectangular channels. Their calculations
were based on a semiempirical turbulence theory and
on the assumption that a universal velocity distribu-
tion law is valid in the case under consideration. The
heat-transfer coefficients were assumed to have zero
values at a corner. The experimental values of the
resistance coefficients averaged over the cross sec-
tion of a square channel proved to exceed the theore-
tical values [1] by 12% [2], while the heat-transfer co-
efficients at Re= 5 » 10* exceeded the theoretical value
by 10% [3]. According to the authors of {2], these

discrepancies may be attributed to the fact that the
theory [1] neglects the secondary currents which act
to increase resistance and heat transfer in the corner
areas.

Graphs of the temperature and heat-flux distri-
bution over the perimeter of rectangular channels
were plotted analytically in [4] on the basis of Niku-
radze's [5] empirical distribution of shear stresses
at the channel wells for isothermal flow. Naturally,
for this case, the region of high temperatures and low
thermal fluxes at the corners is appreciably smaller
than in [1].

At the same time, we are not aware of any exper-
iments aimed at a direct determination of the temper-
atures and heat-transfer coefficients along the per-
imeter of rectangular channels. An exception is [6],
where the temperature distribution over the inner
perimeter of a rectangular channel was measured for
mercury flow. In these experiments, the measured
corner temperatures were only slightly higher than the
temperatures atthe middle of the walls. Itwas also ob-
served that the surface temperature distribution equal-
izes with increasing Peclet number.

Closely related to our investigation is the careful
experimental study performed by Eckert and Irvine [7],
in which the local heat-transfer coefficients were de-
termined for air heated in an isocelestriangular chan-
nel with vertex angle of 11.5°. The graphs obtained in
[7] reveal that at the base of the triangle and at the
84.25° angle itself, the heat-transfer coefficients are
maximum and practically constant. In this region, the
ratio of the local heat-transfer coefficients to the mean
cross-sectional coefficients is roughly equal to 2.1.
The authors of [7] found that the mean heat-transfer
coefficients in the channel studied were approximately
half their value calculated from a formula for circular
tubes.

Thus, the local heat-transfer coefficientsat a nearly
right-angled corner and in its proximity are roughly
equal to those in circular tubes. This result [7] dis-
agrees qualitatively with the statements in [1, 5], ac-
cording to which the heat-transfer coefficients approach
zero at a corner.

An experimental determination of the temperatures
and heat-transfer coefficients along the perimeter of
square channels is thus undoubtedly of interest. It may
be noted that the importance and actuality of this prob-
lem was emphasized in [8].

Usually, the procedure employed in studying heat
transfer for fluid flows in channels consists in mea-
suring the temperature of the outer surface, calecu-
lating the temperature gradients in the wall, and then
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calculating the coefficients of heat transfer to the fluid.

For circular tubes, the problem of determining the
temperature gradients in the walls has been solved
analytically. For channels of complex cross section,
the temperature gradients in the walls are convention-
ally determined by numerical methods, for example,
with the aid of finite~difference schemes [4].

In the following, a procedure is described for ob-
taining an analytical solution to the problem of deter-
mining the local heat-transfer coefficients and temper-
ature distributions along the inner perimeter of tubes
of square cross section with uniform volume heat re-
lease in the walls, for a given temperature distribu-
tion over the outer perimeter of the channel. It is as-
sumed that there is no heat flow in the axial direction
along the walls, i.e., the discussion is limited to the
two-dimensional problem. The heat-transfer coeffi-
cient of the wall material, taken for a certain mean
wall temperature, is postulated to be constant. The
error introduced by this simplification is relatively
small even for materials of low thermal conductivity
such as stainless steel, characterized by large wall
temperature gradients at high thermal loads. The outer
surface of the tube is assumed to be adiabatic, which
in ' most cases corresponds to the test conditions,
since usually the heat release to the atmosphere does
not exceed 5%. We understand the temperature of the
fluid (’cﬂ) to be the mean cross-sectional flow temper-
ature.

Let us examine the cross section of a square chan-
nel (see the figure). In view of the symmetry with re-
spect to axes passing through the middle of the sides,
the problem is to be solved for the rectangular ele-
ment ACDO.

By introducing the notation 6 =t — tg, the heat
equation takes the form
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The condition for the intercept BP may be written in
the same form as for BA:
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where Q) and Q(y) are certain functions, and h(x) =

= a)/A; hy) = oly)/A. We write the functions h(x) and
h(y), which characterize (except on the intercepts AB
and BP, where they are fictitious) the variation of the
heat-transfer coefficients along the perimeter, in the
form
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where ag, ... , ay are certain unknown coefficients,
while ¢y (x) and ¢} (v) are certain functions which may
be expressed, for example, by polynomials.

By solving the problem with the aid of eigenfunc-
tions, an expression is obtained for the temperature
distribution in the wall, in the case where the heat-
transfer coefficient is constant along the perimeter:
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where Qg, Q, -.. , Qp are arbifrary constants.

Then, for an arbitrary distribution of the heat-
transfer coefficients over the perimeter, we have

e(xr y) =
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where ¥y, Fy, ..., F, are certain unknown coeffa
icents that depend on h(x,y), gy/A, & and 1.

It should be noted that the eigenvalues and eigen-
functions for an arbitrary distribution of the heat-
transfer coefficients over the perimeter are the same
as in the case of a constant heat-transfer coefficient,
namely: eigenvalues v, = (m/i?; eigenfunctions Xp =
= cos(m/I)x, wheren = 1,2,...; zero eigenvalue v =
= 0; zero eigenfunction X, =

Equation (7) satisfies all boundary conditions ex~
cept conditions (3) and (4) which, with allowance for
(5), may be written in the form
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Having made (7) satisfy condition (8), we multiply
the obtained equation successively first by the eigen-
functions cos (7/1)y, ..., cos{mm/l)y, and then by Y, =
=1, and integrate over y from 0 to 6. The resulting
system of m equations has the form
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and the equation for Qgis
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After (7) was made to satisfy condition (9), and
having performed the same operations, but integrating
over X from 0 to ], we obtain a system of n equations
of the form
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On the strength of the symmetry with respect to
the diagonal of square OB, we have: Q(x) = Qy); Qy =
=Qq; ok® = ok(y); Xp®) = Yy}, i.e., cos{m/l)x="
=cos (tm/l }y, where m =n.

By subtracting the system of equations (12) from
the system of equations (10), and subtracting Eq. (13)
from (11), we obtain a system of (n + 1) equations
with (n +k + 2) unknowns Fy, Fy, ... , Fp; ap, a4, ...
ay.. Thus, to close the system of equations, (k + 1)
equations must be still obtained. Assuming we have
measured experimentally (n + 1) temperatures along
the x-axis on the outer surface of the channel, then by
substituting the experimental temperatures and their
corresponding coordinates into (7) we obtain a system
of (n + 1) equations from which the (n + 1) unknowns
Fg, Fy, ... , Fp can be determined:

0(x, 0)= E F,cos E— x. (14)

If we set n =k, then by substituting the values of Fy,

Fy, ... , Fp into the systems of equations (10)—-(12)

and (11)-(14), we arvive at a system of (n + 1) equa~
tions which is solvasle with respect to the (n + 1) un-
knowns ay, @y, ... . a.

Thus, the problem can be solvedonly in the case in
which the numiber of terms in (5) is equal to the num-
ber of experirnentally measured temperatures. The
obtained coefficients a5, @y, ... , @, can be substi-
tuted into (5) to obtain the functions h(x) and h(y), and,
also, a relation for the variation of the heat-transfer
coefficient along the inner perimeter, o ) and « (y).
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Obviously, the number of experimentally measured
wall temperatures will be limited in practice. Hence,
in the approximate solution of the problem, the num-
ber of equations in the systems and the number of
terms in the sums will be limited. The accuracy in
the determination of the desired relations improves
with increasing number of experimentally measured
outer-surface temperatures. To improve the accur-
acy, it is necessary in the experimental scheme to
increase the cross-sectional dimensions of the chan-
nel and to reduce the wall thickness and the junction
dimensions of the thermocouples used to measure the
wall temperatures.

As an example, the figure shows the wall temper-
ature distribution obtained from (6) for a square chan-
nel under the assumption that the heat-transfer co-
efficients are constant along the inner perimeter.

The arbitrary constants Qg, Q, --- » Qy in (6)
were determined in the same manner as above. As
infinite system of algebraic equations with an infinite
number of unknowns Qq, Qi» - -- » Qn was obtained.
The system of equations was solved approximately for
values of n up to 3. It was found that, because of the
good convergence, the calculations may be limited to
@y and Qq, =o that the following system of two equa-
tions with two unknowns need be solved:
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The inverse problem, i.e., the determination of
the heat-transfer coefficient distribution from a given
temperature distribution can be readily sclved by the
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method described. This involves merely a slight in-
crease in computational labor.

The described procedure for calculating heat trans-
fer was applied to the processing of experimental data
obtained for the turbulent flow of a coolant in electri-
cally heated square channels 3.5 x3.5 mm and 4.7 x
x4.7 mm in cross section with wall thicknesss of 0.7
mm. For single-phase flow (Re =14 000to 150 000), the
heat-transfer coefficients were found to be practically
constant along the perimeter and equal to the heat-
transfer coefficients in circular tubes calculated by
the equivalent-diameter technique.

Surface boiling sets in always in the corner re-
gions, the heat-transfer coefficients increasing
abruptly in these areas. During surface boiling, the
heat-transfer coefficients and heat fluxes undergo
pronounced changes along the perimeter, decreasing
from the corner to the middle of the wall. The re-
lation between the local heat-transfer intensity and
the local thermal fluxes remains the same as in cir-
cular tubes, i.e., om ~ g%l

NOTATION

t is the wall temperature; gy is the specific volume
heat release in the wall; q is the specific heat flux to
the liquid; A is the specific thermal conductivity of the
wall material; o is the heat-transfer coefficient to the
fluid; & is the wall thickness, 1is half the length of the
tube outer surface; x and y are coordinates; subscript
f1 denotes fluid; subscript ! denotes local.
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